
REVIEW

Has the era of individualised medicine arrived for antifungals? A review
of antifungal pharmacogenomics

HR Ashbee1 and MH Gilleece2

1Mycology Reference Centre, Department of Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK and 2Department
of Haematology, St James’s Institute of Oncology, Leeds Teaching Hospitals NHS Trust, Leeds, UK

Treatment or prophylaxis of invasive fungal infection
in recipients of haemopoietic SCT (HSCT) may require
management of coexistent malnutrition, organ dysfunc-
tion and GVHD, all of which create added potential
for inter- and intra-patient variations in drug metabolism
as well as drug interactions. Polymorphism is common
in genes encoding pathway components of antifungal
drug metabolism such as enzymes (cytochrome P450
(CYP450), glutathione S-transferase, N-acetyltransferase
and uridine 50-diphospho-glucuronosyltransferase), uptake
transporters (organic cationic transporter, novel organic
cationic transporter, organic anion transporter protein
(OATP), organic anion transport (OAT), and peptide
tranporter) and efflux transporters (breast cancer resis-
tance protein, bile sale export pump (BSEP), multidrug
and toxin extrusion type transporter, multidrug resistance
protein (MRP), OAT, permeability glycoprotein (P-gp),
and urate transporter). Specific polymorphisms may be
generalised throughout a population or largely confined
to ethnic groups. CYP450 enzymes, especially 2C9 and
2C19, exhibit extensive polymorphism and are central to
the metabolism of azole antifungals and their interactions
with other drugs including calcineurin inhibitors, cyto-
toxics and benzodiazepines. Polymorphism may ulti-
mately affect drug efficacy: CYP2C19 variation leads
to a fivefold variation in voriconazole levels between
individuals. Anticipated routine provision of pharma-
cogenomic data in the future for new drugs, together with
accumulating knowledge about established agents, chal-
lenge physicians to assimilate and apply that information
to drug prescribing. Increasing availability of pharmaco-
genomic data may strengthen demand for rapid turn-
around therapeutic drug monitoring of antifungal agents
in HSCT recipients.
Bone Marrow Transplantation (2012) 47, 881–894;
doi:10.1038/bmt.2011.146; published online 25 July 2011
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Introduction

Achievements such as the Human Genome Project provide
sound foundations for the development of ‘individualised
medicine’. Therapy tailored to individual genotype may
enable prediction of efficacy and adverse events.1 The Food
and Drugs Administration clearly anticipates such devel-
opments and encourages the inclusion of pharmacoge-
nomic data for new drugs2 such as voriconazole, one of the
first to include these data. Hence, it is timely to review
current knowledge of pharmacogenomics of antifungal
drugs and consider whether we might soon individually
tailor therapy based on our understanding of genotypic
variability in patients.

Absorption, distribution and metabolism of drugs

Table 1 presents an overview of factors affecting drug
absorption, distribution and metabolism.

Gastric pH varies markedly within the population, with
up to tenfold interindividual variation.3 The impact of
gastric pH on absorption of antifungal drugs is most
clinically relevant for itraconazole and posaconazole.

Several antifungals are extensively protein bound, render-
ing them susceptible to variations in the levels of serum
proteins, particularly albumin. Recipients of haemopoietic
SCT (HSCT) are prone to malnutrition,4 with consequent
reduction in serum proteins. At least in the case of itra-
conazole, this results in increased levels of unbound drug.5

Structural variation in plasma proteins, such as is seen in
the genetic variants of albumin,6,7 may affect substrate
binding,8 but no relevant data are yet available as to
whether this affects antifungal drugs.

Most cellular uptake of drugs occurs by passive
diffusion, but some drugs are actively imported, requiring
specific transporters (see Table 2) and energy expenditure.
Most of the transporters exhibit genetic variants, the
relative frequency of which varies with ethnicity.9–11 This
may be reflected in differing transport characteristics and
drug levels among ethnic groups.11 This is relevant to
antifungal therapy as several antifungals are substrates
or inhibitors of these transporters. The effect of genetic
variability of transporters on the cyclodextrin carrier used
to solubilise some antifungal drugs is currently unknown.Received and accepted 9 June 2011; published online 25 July 2011

Correspondence: Dr HR Ashbee, Mycology Reference Centre, Depart-
ment of Microbiology, Leeds General Infirmary, Leeds LS1 3EX, UK.
E-mail: h.r.ashbee@leeds.ac.uk

Bone Marrow Transplantation (2012) 47, 881–894
& 2012 Macmillan Publishers Limited All rights reserved 0268-3369/12

www.nature.com/bmt

http://dx.doi.org/10.1038/bmt.2011.146
mailto:h.r.ashbee@leeds.ac.uk
http://www.nature.com/bmt


The cytochrome P450 (CYP450) enzyme system carries
out phase I oxidative metabolism of a vast range of
endogenous and exogenous substrates, including 75% of
all drugs.12 Drugs metabolised by the same CYP enzymes
often interact,13,14 and several websites detail the role of
CYP enzymes in drug interactions (for example, http://
bioinformatics.charite.de/supercyp/index.php?site¼home,
http://medicine.iupui.edu/clinpharm/ddis/ and http://www.
drugbank.ca/). CYP expression varies with site and age
(see Table 1) and, in addition, there may be up to 20-fold
variability in CYP3A4 activity between individuals.15 Thus,
the same drug given orally to two patients may be subject
to different levels of first-pass metabolism and hence
achieve very different levels in the circulation. A further

complication is the overlapping substrate specificities of
CYP3A4 and permeability glycoprotein (P-gp).16

Interindividual variability of CYP450 enzyme activity
is influenced by the frequent presence of allelic single-
nucleotide polymorphisms (SNPs), some of which result in
reduction or ablation of their metabolic activity. CYP2C19
has over 20 polymorphisms that result in truncated or
inactive enzyme17 and one that causes enhanced activity.18

Other polymorphic cytochromes involved in antifungal drug
metabolism include CYP2C919,20 and CYP3A4/5.21,22 The
prevalence of these polymorphisms varies in different
populations and hence the likelihood of expressing a particu-
lar genotype/phenotype varies with ethnicity. In Caucasians,
B80% will have wild-type 2C9 alleles and B20% the

Table 1 Factors affecting the absorption, distribution and metabolism of drugs

Process Factors affecting the process Comments

Absorption (affects orally administered drugs)
Dissolution in stomach Gastric pH

Presence of food
Gastric pH: lower and more acidic (enhances some drug absorption,
e.g., itraconazole capsules)

in men than women124

in critically ill patients125

Gastric pH: increased and less acidic (reduces some drug absorption,
e.g., posaconazole)

during fasting126

use of H2-receptor agonists
proton pump inhibitors127

Uptake from GI tract Passive diffusion (no energy expenditure)

Active transport (requires expenditure
of energy)

Affected by chemical composition of drug: Lipophilic drugs diffuse
across cell membrane (e.g., itraconazole, posaconazole); hydrophilic
drugs cross via aqueous channels (e.g., fluconazole)
Other drugs, e.g., amphipathic drugs;128 presence and activity
of active transporters (e.g., P-glycoprotein and itraconazole)

Distribution
Protein binding Distribution to tissues affected by extent

of protein binding of the drug in serum
Fluconazole and voriconazole are less protein bound, resulting in
more extensive tissue penetration, such as central nervous system

Drug transporters Presence and activity of transporters
varies in different tissues (see Table 2)

SNPs in transporters may lead to reduced affinity for their substrates,129

although there are currently no data for antifungal drugs

Metabolism
First-pass metabolism
(for orally administered
drugs) and metabolism
of many drugs

Distribution and activity of cytochrome
P450 enzymes and P-glycoprotein in the
liver and GI tract. Activity of CYP450
enzymes varies with age,130 gender131

and ethnicity17

Intestinal CYPs: 3A (80%), 2C9 (B14%)132

Liver CYPs: 3A4/5 (29%), 2C (18%), 1A2 (13%)133

Highest levels of 3A in duodenum and middle jejunum,
declining in the distal jejunum and ileum134

Voriconazole and itraconazole have extensive interactions via
the CYP system

Abbreviations: CYP¼ cytochrome P450; GI¼ gastrointestinal; SNP¼ single-nucleotide polymorphism.

Table 2 Key uptake and efflux transporters

Uptake transporters Efflux transporters Comments

OCT135,136

OCTN137,138

OATP139,140

OAT137,140

PEPT137,141

BCRP142,143

BSEP144,145

MATE146

MRP142,147

OAT148,149

P-glycoprotein150,151

URAT148,152

Relative distribution of each transporter varies in intestines, kidney, liver and brain
Genetic variants have been described for almost all the transporters listed here
(references describing genetic variants are in bold). As several antifungals interact
with these transporters in vitro, potentially they may interact in vivo.

Abbreviations: BCRP¼breast cancer resistance protein; BSEP¼ bile salt export pump; MATE¼Multidrug and toxin extrusion type transporter;
MRP¼multidrug resistance protein; OAT¼ organic anion transporter; OATP¼organic anion transport protein; OCT¼ organic cation transporter;
OCTN¼ novel organic cation transporter; PEPT¼ peptide transporter; URAT¼urate transporter.
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commonly occurring variants, resulting in alterations in their
substrate affinity.23 For 2C19, the incidence of the ‘poor
metaboliser’ phenotype associated with inactive 2C19 protein
production is 2–6% in Caucasians, but 15–20% in Asians.17

Phase II metabolic processes, or conjugation reactions,
are catalysed by a range of enzymes, including glutathione
S-transferase, N-acetyltransferase and uridine 50-diphospho-
glucuronosyltransferase (UGT). These enzymes are geneti-
cally polymorphic,24–26 with some of the resultant enzymes
having decreased activity.26,27 The CYP enzymes are central
to the metabolism of azole antifungals, but some of the
phase II enzymes have also been shown to be important for
certain antifungal drugs.

Absorption, distribution, metabolism and elimination of
antifungal drugs

Polyenes
Amphotericin B deoxycholate and the lipid formulations
of amphotericin B. Amphotericin B deoxycholate is a
polyene antifungal first licensed in the late 1950s, but now
little used in its original formulation because of its toxicity.
It binds to ergosterol in the fungal cell membrane, resulting
in pore formation and leakage of cell constituents.28

The therapeutic advantages provided by the broad
spectrum of activity, including yeasts and moulds, are
offset by infusion-related toxicity and nephrotoxicity. In
contrast, lipid formulations of amphotericin B maintain
similar efficacy and are generally associated with fewer
toxicities, but are significantly more expensive.29 None of
the amphotericin B preparations is absorbed orally and
they must be given i.v. Amphotericin B is extensively
protein bound in serum to lipoproteins via cholesterol,30

serum albumin and human a1–acid glycoprotein,31 but
liposomal amphotericin largely remains within the lipo-
somes in serum and hence does not appear to be
significantly protein bound (Table 3).31

The metabolic pathway of amphotericin B and liposomal
amphotericin is largely unknown,28,32 rendering assessment
of the impact of genetic variation somewhat speculative.
In the case of amphotericin B deoxycholate, most of the
drug is excreted unchanged in urine or faeces with 490%
recovered within 7 days, suggesting that little metabolic
breakdown occurs.33 In contrast, o10% of liposomal
amphotericin B is excreted unchanged within 7 days,33

possibly reflecting slow tissue release.34 No metabolites
have been detected from either drug.

There are few data on the interaction of amphotericin B
with the CYP system or drug transporters (see Table 4).
Amphotericin B was associated with reduced levels of
hepatic CYP3A4 in patients seropositive for HIV but this
may have been because of nonspecific hepatocyte damage.35

There are currently no data on the interaction of liposomal
amphotericin and the CYP enzymes or drug transporters.

Amphotericin B deoxycholate reduces oral bioavailabil-
ity of ciclosporin, an effect observed clinically.36 This is
mediated via increased expression of the multidrug resis-
tance geneMDR1 in the duodenum causing increased levels
of the MDR1 gene product P-gp,36 but it is not known if
liposomal amphotericin has a similar effect. This results

in increased efflux of ciclosporin and reduced plasma
levels. Interestingly, ciclosporin is itself an inhibitor of
P-gp. The MDR1 gene is polymorphic, raising the possi-
bility of variation in the interaction with amphotericin B.
These data suggest a possible interaction between ampho-
tericin B deoxycholate and P-gp, and hence with the genetic
polymorphisms seen in this transporter.

Overall, however, there is little evidence to support a
clinically significant impact of pharmacogenomic variation
upon the therapeutic effects of amphotericin B or its lipid
formulations.

Triazole antifungals
The azoles have a common mode of action, inhibiting
biosynthesis of ergosterol, critical to the integrity of the
fungal cell membrane. Specifically, they inhibit 14a-sterol
demethylase, an enzyme in the conversion pathway of
lanosterol to ergosterol;37 this demethylase is a member
of the CYP450 superfamily found in fungi, designated
CYP51A1.

Azoles are both inhibitors and substrates of various
human CYP enzymes (Table 4). This may explain, in part,
the plethora of drug interactions between azoles and several
other groups of drugs, many of which are clinically relevant
to the HSCT recipient.38

Fluconazole. Fluconazole is a triazole antifungal, with
activity against Cryptococcus and many species of Candida,
often with reduced activity against Candida glabrata and
none against Candida krusei. It is not active against
Aspergillus.

Available as oral and i.v. formulations, the oral bio-
availability of fluconazole exceeds 90%,39 and is unaffected
by gastric pH,40 food intake or gastrointestinal disease.41

It is hydrophilic with minimal protein binding and there-
fore achieves good tissue penetration into cerebrospinal
fluid, saliva, sputum, vagina, skin41 and brain tissue.42

Elimination of fluconazole is predominantly renal with no
circulating metabolites.43

Fluconazole inhibits, but is not a substrate of, several
CYP enzymes (Table 4). It inhibits 2C9, 2C19 and to a
lesser extent 3A4,44,45 but not CYP1A2,46 2A6 or 2E1.
Its ability to inhibit 2C9 and 2C19 causes potential drug
interactions particularly relevant to HSCT recipients; for
example, the interaction with CY may result in increased
formation of toxic metabolites,47 although others have
noted a protective effect of co-administration.48

Fluconazole is both a substrate49 and an inhibitor50

of the UGT isoform, UGT2B7, the enzyme involved in
its metabolism to the urinary metabolite fluconazole
glucuronide.43 It also inhibits UGT2B4, hence inhibiting,
for example, the glucuronidation of codeine that may
potentiate codeine-induced analgesia.51

The limited involvement of CYP and drug transporters
in the uptake and metabolism of fluconazole means that
their genetic variation has relatively little impact on
fluconazole pharmacokinetics.

Itraconazole. Itraconazole is a triazole antifungal, with
activity against Candida species (including some fluconazole-
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resistant species), Aspergillus, Cryptococcus and a range of
other clinically important fungi.

Itraconazole is available as capsules, an oral solution and
an i.v. infusion. The bioavailability of the capsules and oral
solution varies significantly with dietary intake. Itracona-
zole capsules are maximally absorbed with food52 and
acidic drinks (for example, cola53 or vitamin C drink54) at
low gastric pH. Oral itraconazole solution has increased
bioavailability (B30–35%) compared with the capsules,
but in contrast to the capsules, is maximally absorbed
during fasting.55 Variations in gastric acidity and the wide-
spread use of proton pump inhibitors in HSCT recipients
may decrease absorption of itraconazole. Therefore, use of
itraconazole oral solution in these patients, which produces
higher serum trough concentrations,56 is preferred.

Itraconazole is also a substrate or inhibitor of several
drug transporters (Table 4).

Itraconazole is extensively protein bound, mainly to
albumin,57 and is predominantly metabolised in the liver,
mainly by CYP3A4, for which it is both a substrate and an
inhibitor.58 More than 30 metabolites are formed,57

including hydroxy-itraconazole,59,60 all of which are in-
hibitors of CYP3A4 and have a higher affinity for CYP3A4
than itraconazole itself. This may explain the potency of
CYP3A4 inhibition seen with itraconazole.59

Recently, itraconazole was shown to be a substrate for
the phase II enzyme UGT1A4, with an affinity similar to

that of the imidazole antifungal agents, and it may also be
an inhibitor of UGT1A4.49

Itraconazole interacts with several genetically variable
drug transporters and CYP enzymes, thus implicating them
in the observed variability of itraconazole levels. Moreover,
because CYP3A4 and P-glycoprotein also play a crucial
role in the metabolism of many other drugs used in HSCT
patients, this effect is likely to be compounded. Enhanced
understanding of the pharmacogenomics of itraconazole
will optimise itraconazole dosing as well as prediction of
toxicities with other drugs.

Voriconazole. Voriconazole is a triazole antifungal, avail-
able as i.v. and oral formulations, with excellent oral
bioavailability61 and highly variable nonlinear pharmaco-
kinetics.62–64

Excretion of voriconazole occurs predominantly via
metabolites in the urine, with limited faecal excretion.65

Voriconazole has moderate plasma protein binding, but
there are limited data on the interaction of voriconazole
with the various drug transporters. Voriconazole may
interact with CaMdr1p,66 the yeast homologue of P-gp, and
by implication human P-gp.

Genetic polymorphism in CYP2C19 accounts for 49% of
the variance in clearance of voriconazole,67 with recogni-
tion of ‘poor metaboliser’ and ‘extensive metaboliser’
phenotypes.17 Levels of voriconazole in poor metabolisers

Table 4 Interactions of antifungals with cytochrome P450 enzymes and transporters

Interaction Comments

Amphotericin B No inhibition of CYP3A4160 or of P-gp in vitro. Interaction with other transporters unknown.
Fluconazole Potent inhibitor of CYP2C9 and CYP2C19,44,45 and

less so for CYP3A4.160

No inhibition of P-gp160–162 or BCRP.163

Interaction with ciclosporin via CYP inhibition causes increased
ciclosporin levels, especially with oral fluconazole.164,165

Itraconazole Substrate for CYP3A4;57 potent inhibitor of
CYP3A4160 and less so for CYP2C9, CYP2C19.45

Substrate166 and inhibitor of P-gp.160,161,167

Conflicting data as to inhibitory effect on OATP.168,169

Inhibitor of multidrug resistance protein 3.170

Inhibitor of BCRP.163 No inhibition of NTCP
or BSEP.170

CYP3A4 inhibition will affect metabolism of a variety of drugs to increase
their levels (e.g., BU,171 dexamethasone,172 midazolam,173 ciclosporin,174

tacrolimus,174 methyl-prednisolone175) or the levels of their metabolites.
(e.g., CY47).

Inhibition of P-gp and, therefore P-gp-mediated cellular efflux, may cause
increased VCR toxicity,176 increased ciclosporin, tacrolimus and sirolimus
levels,177 reversal of resistance to vinblastine, DNR and doxorubicin.178

Voriconazole Substrate for CYP2C19, CYP 3A4, CYP2C9.73

Inhibitor of CYP2C9, CYP2C19, CYP3A4 and
CYP2B6.179

No inhibition of BCRP.163

CYP interaction probably accounts for the interaction of voriconazole
with many drugs, causing increased levels of tacrolimus,180 ciclosporin,181

increased VCR neurotoxicity182 and reduced clearance of midazolam,183

particularly the oral formulation of midazolam. Concomitant use of
rifabutin,184 an inducer of CYP and especially of CYP3A4, causes
significant reduction in voriconazole levels.

Posaconazole Inhibitor of CYP3A4, but not a substrate of CYP.185

Inhibitor and substrate of P-gp.86

Inhibition of CYP3A4185 results in increased levels of ciclosporin,
tacrolimus186 and midazolam.185

Genetic polymorphisms of P-gp did not affect posaconazole exposure in
healthy individuals.86

Caspofungin Inhibitor of CYP3A458 and NCTP.96 Not a substrate
for CYP1A2, 2A6, 2C9, 2C19, 2D4 or 3A4.

No inhibition of P-gp96

Substrate and inhibitor of OAT1B1.96

CYP3A4 inhibition by caspofungin causes a 76% decrease in the
metabolism of cytarabine.187 CYP inducers (e.g., rifampin, nevirapine,
efavirenz, carbamazepine, dexamethasome and phenytoin) induce the
metabolism of caspofungin.106

Rifampin may inhibit caspofungin tissue penetration via OATP1.99

Micafungin Slight inhibition of CYP3A4.160

No inhibition of P-gp.160
Micafungin inhibition of CYP3A4 increases ciclosporin levels in B20% of
patients,188 but not tacrolimus.189

Anidulafungin No inhibition of CYP or OATP.109 Currently, no drug interactions are recorded.

Abbreviations: BCRP¼ breast cancer resistance protein; BSEP¼bile salt export pump; CYP¼ cytochrome P450; NTCP¼Na–taurocholate cotransporting
polypeptide; OAT¼ organic anionic transporters; OATP¼ organic anionic transporting polypeptide; P-gp¼ permeability glycoprotein.
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can be 4 to 5 times higher than those in extensive
metabolisers.68 A rapid metaboliser 2C19 phenotype has
been described,18 resulting in levels of voriconazole that
are significantly lower than either the extensive or poor
metaboliser phenotypes.69 Interestingly, the coexistence of
multiple CYP polymorphisms in the same patient do not
necessarily have an additive effect on the metabolism of
voriconazole.70–72

Metabolism of voriconazole results in several metabo-
lites, the major circulating metabolite being the N-oxide of
voriconazole,65 formed predominantly by CYP3A4 and
2C19, with a smaller contribution from 2C9.73 Production
of the methyl hydroxylated metabolite is due solely to
CYP3A4.74 CYP450-mediated metabolism of voriconazole
is responsible for B75% of its oxidative metabolism.
The remainder is due to flavin-containing mono-oxyge-
nases75 that also exhibit genetic polymorphism with
resultant variations in catalytic activity.76 Voriconazole is
also a low-affinity substrate for UGT1A4 in vitro.49

An understanding of how genetic polymorphism affects
voriconazole metabolism has been pivotal in explaining
the pharmacokinetic variability observed in patients. The
occurrence of genetic variants in the CYP alleles (Table 4)
has a significant impact on the levels of drug achieved in
those patients and probably upon the therapeutic efficacy
of voriconazole.77–79

Posaconazole. Posaconazole is a triazole antifungal, cur-
rently only available as an oral suspension. Its bioavailability
is significantly improved when taken with food (168%
compared with the fasting state), especially if the food
is high in fat (290% compared with the fasting state).80

Doses up to 800mg/day result in dose-proportional phar-
macokinetics, but absorption is saturated at 800mg/day.81

Absorption of posaconazole is further improved by split-
ting the dose (200mg four times daily compared with
400mg twice daily) and administering with an acidic
beverage or a nutritional supplement.82,83 Concomitant
dosing with cimetidine84 or omeprazole82 both decrease
posaconazole serum trough levels, probably because of
reduced gastric acidity, an effect likely to be seen with other
H2 receptor agonists or proton pump inhibitors.85

Data on interactions with transporters demonstrate
that posaconazole is both a substrate and an inhibitor
of P-gp.86 The effect of SNPs in P-gp alleles was studied
in 28 black and 28 Caucasian healthy volunteers dosed
with 400mg posaconazole twice daily after a meal.
Individuals with a SNP resulting in reduced expression
of P-gp (n¼ 13) demonstrated no difference in the area
under the curve compared with those with normal levels
of P-gp (n¼ 43). Therefore, the expression of SNPs in
P-gp alleles had no effect on posaconazole pharmaco-
kinetics in healthy individuals,86 but whether this is also
true in HSCT recipients, many of whom may have other
issues related to absorption and reduced food intake,
is not known. There are as yet no data on the interaction
of posaconazole with other transporters in the setting of
HSCT.

Posaconazole is extensively bound by plasma proteins
mainly by serum albumin.87

In contrast to the other triazoles, posaconazole interacts
with fewer CYP enzymes (Table 4), possibly explaining its
narrower drug interaction range.

Posaconazole is excreted largely unchanged; there are no
active metabolites88 and the metabolites seen in urine are
glucuronide conjugates,89 produced by UGT1A4.90 Genetic
variants occur in the alleles for this enzyme,91 some of
which cause reduced catalytic activity.92 Drug interactions
may also occur via the UGT metabolic pathway, including
that between posaconazole and phenytoin.93

Overall, it is likely that the effect of genetic variation on
posaconazole pharmacokinetics is relatively small and
more related to absorption than metabolism or elimination.

Echinocandins
The echinocandins inhibit b1,3-glucan synthetase, an
enzyme involved in fungal cell wall synthesis, leading to
increased cell wall permeability and fungal cell lysis. The
lack of b1,3-glucan synthetase and cell wall in human cells
explains the corresponding lack of toxicity seen with the
echinocandins.94

Caspofungin. Caspofungin is an echinocandin antifungal
that is dosed i.v. and is extensively protein bound in
plasma, mainly to albumin. Its plasma profile is determined
primarily by its rate of distribution from plasma into
tissues, rather than by metabolism or excretion.95 Uptake
occurs into hepatocytes via an initial rapid reversible
adsorption to the cell surface and a second slow phase of
transport across the cell membrane,95,96 mediated by
organic anion transporter protein 1B1 (OATP1B1).96

Interactions with other transporters are detailed in Table 4.
Biotransformation of caspofungin occurs primarily

through hydrolysis, rather than by oxidative metabolism.97

An initial open-ring metabolite is found in plasma, with
subsequent peptide degradation resulting in low MW
products found in urine. Within 4 weeks, 41% of the dose
is excreted in urine and 35% in faeces98 as metabolites.

Caspofungin is the echinocandin with most interaction
with the CYP450 system (see Table 4).

Rifampin may inhibit the uptake of caspofungin into the
tissues via OATP1, with trough levels 14–31% lower after
multiple rifampin doses.99 Genetic polymorphisms of
OATP1B1100 may affect the efficiency of uptake of
caspofungin into the liver. However, there are no other
known points at which genetic variability affects caspo-
fungin, and hence pharmacogenomic analysis will be of
minor importance in optimising use of this antifungal drug.

Micafungin. Micafungin is an echinocandin antifungal
that is dosed i.v. It is mainly to bound to albumin and
binding is independent of micafungin concentration.101

Hepatocyte uptake is mediated by both active and passive
mechanisms. Na–taurocholate cotransporting polypeptide
(NTCP) is most important in uptake, whereas secretion
across the canalicular hepatocyte membrane is mediated
largely by BSEP (bile sale export pump). MRP3 (multidrug
resistance protein 3) mediates transport of micafungin
across the sinusoidal hepatocyte membrane. Biliary excre-
tion rather than hepatic uptake is thought to be the rate-
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limiting step in hepatic elimination of micafungin in
humans.102 Active transport is utilised for both uptake
and excretion of micafungin and may be susceptible to
genetic variability, as all the transporters involved in the
process are known to be polymorphic.

Metabolism of micafungin occurs mainly in the liver,
with inactive metabolites excreted in bile and urine.103

Arylsulfatase is involved in micafungin metabolism,104 and
polymorphisms have been described.105

In general, however, pharmacogenomic analysis seems
unlikely to add much to the clinical use of micafungin.

Anidulafungin. Anidulafungin is an echinocandin anti-
fungal that is dosed i.v. Importantly, anidulafungin has no
interactions described with any drug yet studied,106 includ-
ing rifampin.107

Anidulafungin is extensively bound by plasma pro-
teins108 and undergoes biotransformation, rather than
metabolism, undergoing a slow, nonenzymatic degradation
to inactive peptides.97 Neither phase 1 nor phase 2 hepatic
metabolism is involved in elimination of anidulafungin,
nor is it a substrate, inducer or inhibitor of CYP450.
At physiologically relevant concentrations it does not
inhibit OATP.109

Elimination of anidulafungin is via bile in the faeces,
with o10% of the drug excreted unchanged in the faeces
and o1% in urine.107,110

Genetic variation of CYP or phase II enzymes or the
hepatic transporters is unlikely to affect anidulafungin
pharmacokinetics, given their lack of interaction with
anidulafungin, and hence pharmacogenomic analysis will
not inform clinical use.

Therapeutic drug monitoring (TDM)

TDM is considered necessary for drugs with (1) unpredict-
able population pharmacokinetics, (2) a narrow therapeutic
index and (3) a defined therapeutic range.111 Amphotericin
B, its lipid formulations and the echinocandins demon-
strate predictable pharmacokinetics, and hence TDM is
not required. The triazoles are the main agents where
TDM is considered helpful in optimising treatment.111–113

Although levels of fluconazole can vary significantly
between patients, the variability is largely due to renal func-
tion, and hence doses are best adjusted according to creati-
nine clearance.114 There is increasing evidence to support
TDM in routine use of itraconazole, voriconazole and
posaconazole.

The methods available for the measurement of drug
levels include bioassays, high-performance liquid chroma-
tography and liquid chromatography–mass spectrometry.
Bioassays are inherently unreliable in patients receiving
more than one antifungal drug, where the assay will usually
only measure total antifungal activity and cannot separate
out the activity due to each drug.115 The presence of the
microbiologically active metabolite of itraconazole, hydro-
xy-itraconazole, results in artificially elevated results in
itraconazole bioassays.112 Most laboratories now use either
high-performance liquid chromatography or liquid chro-
matography–mass spectrometry as they are more sensitive,
specific and have reduced analytical times. When properly
validated, they are capable of measuring the level of an
individual drug even in the presence of others. Assessment
of a laboratory service for provision of TDM should ensure
that the assays are performed regularly and results are
communicated in a timely manner to ensure that they are
relevant to patient management (see Table 5). The thera-
peutic ranges used vary between laboratories, but data are
accumulating to suggest what the optimal ranges should be.

Table 5 Assessment of laboratory service for provision of
therapeutic drug monitoring (TDM)

Assay is fully validated190,191 and is:
Selective
Accurate
Sensitive
Robust
Stable
Performs well in relevant quality assurance schemes

Small sample volume required
Clinical range defined
Assay performed regularly (ideally daily) and results communicated
quickly
Cost per test appropriate to allow regular testing
Staff available to provide advice on interpretation of results and suggest
corrective action if necessary

Table 6 Therapeutic drug monitoring ranges for itraconazole, voriconazole and posaconazole (pre-dose or trough levels)

Antifungal Target during
prophylaxis
(mg/L)

Target during
treatment
(mg/L)

Upper limit
of nontoxic

range (mg/L)

Studies from which levels are derived

Itraconazole 0.5 0.5 4–5 Outcome better in aspergillosis,192 cryptococcosis193 and oral candidosis194 with
higher serum trough levels. In neutropenic patients, fewer breakthrough infections
during prophylaxis with levels 40.5mg/L195

Voriconazole 1–2 1–2 5–6 In invasive aspergillosis, favourable outcome correlated with levels 42.05mg/L.77

Improved outcome and lower fungal infection-related mortality with trough
levels 42.2mg/L79

Liver toxicity seen in patients with levels 46mg/L63 and neurotoxicity seen
in patients with levels 45.5mg/L78

Posaconazole 0.7 1.25 Unknown In prophylaxis, levels above 0.7mg/L were associated with reduced clinical failure196

In salvage therapy for invasive aspergillosis, response rate increased with
increasing serum levels and in patients with average levels above
1.25mg/L response rate was 75%197
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Table 6 summarises therapeutic ranges for itraconazole,
voriconazole and posaconazole, and Table 7 lists the
suggested indications for TDM.

Use of TDM is becoming more widespread and data from
reference laboratories indicate that therapeutic levels are not
achieved in a significant proportion of routine samples.116–118

In compliant patients who have levels persistently out of range,
there is an argument to support pharmacogenomic analysis of
CYPs, for example, 2C19 in the case of voriconazole. In fact,
some clinical laboratories are already providing this service.

The inability to predict serum levels from triazole drug
doses, the significant potential for drug interactions, the
effects of genetic variation on pharmacokinetics and the
correlation between improved outcomes with higher serum
levels all add to the weight of evidence supporting TDM
in HSCT recipients.

Conclusions and future perspectives

Antifungal efficacy in invasive fungal infection is dependent
on systemic drug exposure; therefore, maximising the
absorption and distribution of antifungals to relevant
tissues is essential for favourable treatment outcomes.
The potential for genetically induced variation in metabo-
lism of antifungal drugs, and the knock-on effect on
drug interactions, remains largely theoretical, pending
systematic laboratory evaluation. Such experience will
clarify the relative importance of specific polymorphisms.
However, there is already ample evidence of clinically
relevant pharmacogenetic influence in the case of the
azoles, particularly voriconazole. In contrast, its role in
the use of amphotericin B and the echinocandins may be
less important, because of their distinct metabolic and
elimination pathways.

Genetic variation affects susceptibility to fungal infec-
tion,119 metabolism and drug interactions of antifungals
and, it is now emerging, the development of resistance to
the azoles in Aspergillus fumigatus.120,121 Unsurprisingly,
mutations of fungal CYP51, a prime target of the triazoles,
seem to mediate the predominant resistance pathways.122

Large-scale screening for SNPs in relevant human genes,
using next-generation sequencing techniques,123 is now
feasible. As scientists unravel the journey of antifungal

drugs through the body and the many enzymes and
transporters encountered en route, we will benefit from a
better understanding of how genetic variation affects
pharmacokinetics. An individual will have a unique profile
of susceptibility to invasive fungal infection,119 metabolic
handling of and response to antifungal therapy. Mean-
ingful analysis of this genomic profile is a tantalising
prospect on the horizon, if not quite within our grasp. The
transition from horizon to clinic will depend upon a better
understanding of the costs and benefits, particularly in the
current economic climate.
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concomitant medication.
bNot usually applicable for voriconazole because absorption is independent
of gastric pH.
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